Thank you for your interest in contributing to SLM Lab!
Contribution Tracks
1. Run Benchmark Experiments
Help validate algorithms across environments. Follow this protocol:
Before Running
Audit spec settings - Verify num_envs, max_frame, and max_session match environment category standards:
Category
num_envs
max_frame
max_session
Classic Control
4
2e5-3e5
4
Box2D
8
3e5
4
MuJoCo
16
4e6-10e6
4
Atari
16
10e6
4
Set up HuggingFace credentials in .env:
HF_TOKEN=hf_xxxxxxxxxxxxHF_REPO=SLM-Lab/benchmark# or your own repo
Running
source.env# Local trainingslm-labrunslm_lab/spec/benchmark/ppo/ppo_hopper.jsonppo_hoppertrain# Or remote training (faster, uses cloud GPU)slm-labrun-remote--gpuslm_lab/spec/benchmark/ppo/ppo_hopper.jsonppo_hoppertrain-nppo-hopper
After Running
Record scores - Extract total_reward_ma from logs
Update results table - Add HuggingFace folder link
git clone https://github.com/kengz/SLM-Lab.git
cd SLM-Lab
uv sync
# Create a branch
git checkout -b feature/your-feature
# Make changes, run tests
uv run pytest
# Format code
uv run ruff format .
uv run ruff check . --fix
# Commit with conventional format
git commit -m "feat: add new feature"